One step ahead forecasting using
نویسندگان
چکیده
When dealing with time series the one step ahead forecasting problem based on experimental data is the problem of estimating the autoregression function of the underlying process When minimizing the expected forecast ing error is the main goal the exible approach has to be used to be able to adjust the complexity of the model to the complexity of the data Multilay ered perceptrons are a popular example of such a exible approach but not the only one Other methods such as kernel approximator e g Naradaya Watson regressor regression spline or wavelet regressor can also be used But whatever exible approach is the main issue remains the control of the complexity of the exible approximator Noise injection in the inputs is an e cient technique to do so The complexity of the regessor is then adjusted thanks to the quantity variance of injected noise This quantity is tuned using a bootstrap estimation of the forecasting error One unexpected e ect of this approach is the possibility to prove the consistency of the estimator under some assumptions about the underlying process who generates the time series The two main assumptions are the process is varying signi cantly and the process is bounded Furthermore the boundary conditions imply to eliminate the tendency for the remaining process to be bounded This theoret ical result permits to design a methodology for using multilayered perceptrons to forecast The whole approach was applied successfully to forecast the daily water consumption in the south of Paris
منابع مشابه
The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملGaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting
We consider the problem of multi-step ahead prediction in time series analysis using the non-parametric Gaussian process model. -step ahead forecasting of a discrete-time non-linear dynamic system can be performed by doing repeated one-step ahead predictions. For a state-space model of the form , the prediction of at time is based on the point estimates of the previous outputs. In this paper, w...
متن کاملBeyond One-Step-Ahead Forecasting: Evaluation of Alternative Multi-Step-Ahead Forecasting Models for Crude Oil Prices
Note: This preprint copy is only for personal use.
متن کاملLinear Gaussian affine term structure models with unobservable factors: Calibration and yield forecasting
This paper provides a significant numerical evidence for out-of-sample forecasting ability of linear Gaussian interest rate models with unobservable underlying factors. We calibrate one, two and three factor linear Gaussian models using the Kalman filter on two different bond yield data sets and compare their out-of-sample forecasting performance. One step ahead as well as four step ahead out-o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003